O.P.Code: 20HS0812

R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. II Year I Semester Supplementary Examinations October/November-2025 MANAGERIAL ECONOMICS AND FINANCIAL ANALYSIS (Common to CSE, CSIT & CE)

		(Common to CSE, CSIT & CE)		30	43
Tiı	ne	: 3 Hours	Max.	Mark	ks: 60
		(Answer all Five Units $5 \times 12 = 60$ Marks)			2
		UNIT-I		45	
= 1 "	a	What is demand analysis? Discuss in detail.	CO1	L1	6M
		The demand for a particular product depends on several factors -	CO ₁	L2	6M
		Discuss.		5 × ×	
-		OR			-0.5
2	a	List out the contemporary practices of Managerial Economics.	CO ₁	L2	6M
		Describe the Law of Demand" and its exceptions.	CO ₁	L1	6M
		UNIT-II		- E =	
3	a	What is Marginal rate of technical substitution?	CO ₂	L2	6M
	b	Evaluate the Cobb Douglas production function.	CO ₂	L4	6M
	G.	OR		20 0	. 2 .
4		A high-tech rail can carry a maximum of 36,000 passengers per annum	CO ₂	= L5	12M
		at a fare of Rs. 400. The variable cost per passenger is Rs. 150 while the			160
		fixed costs are 25,00,000 per year. Find the break- even point in terms of			
		number of passengers and also in terms of fare collections.	0		
		UNIT-III			8
. 5	a	How markets are classified based on degree of competition?	CO3	L4	6M
		Define market structure.	CO3	L1	6M
		OR	6		
6	a	Discuss various characteristics of market.	CO3	L2	6M
	b	State the features of Imperfect competition.	CO ₃	L1 -	6M
		UNIT-IV	X.		
7	a	The cost of project-A is Rs 50000 and cost of project-B is Rs1,00,000	CO4	L5	6M
,	**	the annual cash inflow for the next 4 years are Rs 25000. What is the	004		OIVI
		Payback period for the Project A & B?	ř.		
	b	The cost of a project is Rs.50,000 which has an expected life of 5 years.	CO4	L5	6M -
	***	The cash inflows for next 5 years are Rs.24,000; Rs.26,000; Rs.20,000;		10	'n
		Rs.17000 and Rs.16,000 respectively. Determine the Payback period.	2		
		OR			
8	a	What is capital? Elucidate the over and under capitalization.	CO ₄	L3	6M
		State the Remedial measures of over and under capitalization.	CO4	L2	6 M
		UNIT-V			
9	a	A firm's sales during the year were Rs 4, 00,000 of which 60 percent	CO5	L5	6M
		were on credit basis. The balance of debtors at the beginning and end of	10.0		
2		the year were 25,000 and 15, 000 respectively. Calculate debtor"s			3
		turnover ratio of the firm, also find out debt collection period.	:#1		9
	b	Write a short note on the following Liquidity ratio.	CO ₅	L2	6M
		OR	= 53		8
10	a	Write short notes on interest coverage ratio.	CO ₅	L2	6M
	b	Explain Gross profit ratio and Net profit ratio.	CO ₅	L1	6M
		*** END ***			

O.P.Code: 20CS0505

R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. II Year I Semester Supplementary Examinations October/November-2025 DATABASE MANAGEMENT SYSTEMS

(Common to CSIT, CSM, CAD, CAI & CSE)

Time	: 3 Hours	lax. Ma	+be-	60
1 11110	(Answer all Five Units $5 \times 12 = 60$ Marks)	iax. Ma	II AS.	00
	UNIT-I			
1		COI	т 2	CM
1	a Why is the use of data independence? Explain by listing some of its major advantages.	CO1	L3	6 M
		CO1	L2	CM
	b What is an Attribute? Explain different types of Attributes.	COI	LZ	6M
2	OR	CO1	т 2	(B.f.
2	a Create the DDL Commands – Table Creation, Altering the table	CO1	L3	6 M
	structures, truncating a table and dropping a table.	CO1	т 2	CM
	b Differentiate between Database users and administrators.	CO ₁	L2	6M
_	UNIT-II			
3	a Illustrate different operations in Relational algebra with an example?	CO2	L3	6M
	b Evaluate Order by, Group by and Having Clauses with example.	CO ₂	L3	6M
	OR			
4	a Classify the Relational calculus in detail?	CO2	L2	6M
	b What are Views in SQL? Give an example.	CO ₂	L2	6M
	UNIT-III			
5	Outline the terminologies: Partial Dependency, Transitive Dependency,	CO ₃	L3	12M
	Determinant, MVD, Join Dependency.			
*:	OR			
6	a What is Normalization? List out the of purpose normalization.	CO ₃	L2	6M
	b Compare Trivial and Non – Trivial Functional Dependencies with	CO ₃	L2	6M
	example.			
	UNIT-IV			
7	a How do you implement Atomicity and Durability.	CO ₄	L3	6M
	b What is Schedule? Explain the serial schedule with examples.	CO ₄	L2	6M
	OR			
8	a Demonstrate Conflict Serializability in detail.	CO ₄	L3	6M
	b What is a Transaction? Explain the States of the transaction with a neat	CO ₄	L2	6M
	sketch.			
	UNIT-V			
9	a Illustrates the basic principle of media recovery on a database.	CO ₅	L3	6M
	b Explain in detail about Deadlock detection.	CO ₅	L3	6M
	OR			
10	a Explain how recovery is done using undo logging and redo logging.	CO ₅	L3	6M
	b Describe the deadlock prevention schemes.	CO5	L2	6M
	-			

*** END ***

O.P.Code: 20CS0513

R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. II Year I Semester Supplementary Examinations October/November-2025 COMPUTER NETWORKS

(Common to CCC & CIC)

Tit	ne:	(Common to CCC & CIC)	May	Marl	xs: 60	
(Answer all Five Units $5 \times 12 = 60$ Marks)					25. 00	
	UNIT-I					
1		Explain in detail about TCP/IP Network model.	CO1	L2	12M	
		OR				
2	a	Briefly explain about Coaxial cable.	CO1	L2	6M	
	b	Explain in detail about Fiber optic cable.	CO1	L2	6M	
		UNIT-II				
3	a	Write about the services provided by the Data link layer.	CO2	L4	6 M	
	b	Classify the Data Link Layer Design Issues.	CO2	L4	6M	
		OR				
4	a	Write about FDMA protocol.	CO2	L4	6M	
	b	Write about TDMA protocol.	CO2	L4	6M	
		UNIT-III				
5	a	Explain distance vector routing algorithm.	CO3	L2	6M	
	b	Briefly state what is count to infinity problem.p	CO4	L3	6M	
		OR				
6	a	Explain about quality of service in network layer.	CO6	L2	6 M	
	b	Describe the term internetworking in network layer.	CO4	L2	6M	
	UNIT-IV					
7		Write in detail about User Datagram Protocol (UDP).	CO4	L4	12M	
		OR				
8	a	Describe about TCP connection Establishment.	CO4	L2	6M	
	b	Describe about TCP Connection Release.	CO4	L2	6M	
		UNIT-V				
9	a	List out the four main properties of HTTP.	CO5	L1	6M	
	b	Illustrate in detail about function and structure of e-mail protocol.	CO5	L3	6M	
		OR				
10		Write in detail about DNS Name Space and Domain Resource records.	CO6	L4	12M	
		*** END ***				

O.P.Code: 20EE0202

R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech II Year I Semester Supplementary Examinations October/November-2025 ELECTRICAL MACHINES-I

ELECTRICAL MACHINES-I					
(Electrical and Electronics Engineering)					
Tiı	ne	: 3 Hours	Max.	Mark	s: 60
		(Answer all Five Units $5 \times 12 = 60$ Marks) UNIT-I			
1	a	Explain the working principle and operation of a DC generator using a single-turn loop generator as an example.	CO1	L2	6M
	b	Explain the distinction between Lap winding and Wave winding in DC machines.	CO1	L2	6M
		OR			
2	a	Derive the EMF equation of a DC generator by clearly stating the	CO ₁	L3	6M
		assumptions made.	~~.		
	b	An 8-pole DC shunt generator having 778 wave-connected armature conductors runs at 500 rpm and supplies a load of 12.5 Ω resistance at a terminal voltage of 50 V. The armature resistance is 0.24 Ω , and the field resistance is 250 Ω . Determine the armature current, induced EMF and flux per pole.	CO1	L3	6M
		UNIT-II			
3		Explain the parallel operation of a DC generators with with a neat and well-labeled diagram.	CO2	L3	12M
		OR			12
4	a	Explain the no-load characteristics of a self-excited generator with a suitable diagram.	CO2	L2	6M
	b	Explain the no-load characteristics of a separately excited DC generator with a suitable diagram. UNIT-III	CO2	L2	6M
5	a	Derive the torque equation of a DC motor and explain each term involved.	CO3	L3	6M
	b	Explain the significance of back EMF in DC motors and its effect on motor performance.	CO3	L2	6M
		OR			
6		Describe the field flux control method used for speed regulation in DC motors.		L2	6M
	b	A 250 V DC shunt motor has an armature resistance of 0.25 Ω . Under load,	CO ₃	L3	6M
		it draws an armature current of 50 A and operates at 750 rpm. Calculate the			
		new speed of the motor when the field flux is reduced by 10%, assuming the load torque remains constant.			
		UNIT-IV			
7		Explain the construction, working principle, and functional significance of	CO4	L3	12M
		a 4-point starter used in DC motors.	cor		12111
		OR			
8		Describe the procedure for conducting Swinburne's test on a DC machine. Discuss its advantages and limitations.	CO4	L3	12M
•		English the second of the Control of	~~=	T 4	403.5
9		Explain the constructional features and operating principle of a Permanent Magnet Brushless DC motor. Also highlight its advantages over conventional DC motors.	CO5	L2	12M
		OR			
10		Describe the construction and working mechanism of a stepper motor. Explain how it achieves precise angular displacement.	CO5	L2	6M
	b	List and explain key applications of stepper motors.	CO5	L2	6 M

O.P.Code: 20EC0403

R20

H.T.No. 31/10/25 AN

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. II Year I Semester Supplementary Examinations October/November-2025 SWITCHING THOERY AND LOGIC DESIGN

(Electronics and Communication Engineering) Time: 3 Hours Max. Marks: 60 (Answer all Five Units $5 \times 12 = 60$ Marks) UNIT-I 1 a Define Boolean Algebra and list the postulates used in it. **CO1** L1 **5M b** Simplify the given Boolean expression to a sum of 3 terms. CO₂ L₂ **7M** A'C'D' + AC' + BCD + A'CD' + A'BC + AB'C'OR a What are Universal Gates? Relialize any two gates from universal gates. CO₁ L1 **5M b** Simplify the following Boolean expressions: CO₂ L3 **7M** i) (X'+Z')(X+Y'+Z')ii) (X'Y' + Z)' + Z + XY + WZUNIT-II a List the steps involved in simplification of K-Map. CO₃ L1 **5M b** Simplify the Boolean expression, F=A'+AB+ABD'+AB'D'+C' using CO₃ L2 **7M** Four Variable K-Map and draw the logic diagram using AOI. Simplify the following Boolean function by using Tabulation method. 4 CO₃ L₃ 12M $F = \Sigma (0, 1, 2, 8, 10, 11, 14, 15)$ UNIT-III a Design & implement a 4-bit Binary-to-Gray code converter. **CO4** L3 **6M b** Design a Full Subtractor using truth table. CO₄ L3 **6M** 6 Illustrate the following Boolean functions using decoder and OR gates. **CO**4 L3 **12M** $F1(A,B,C,D)=\Sigma(2,4,7,9)$ $F2(A,B,C,D) = \sum (10,13,14,15)$ UNIT-IV a Differentiate between combinational and sequential circuits. **CO1** L₁ **5M** b Convert SR flip flop into JK Flip-Flop. Draw and explain its logic L3 CO₅ **7M** diagram. OR 8 What is a synchronous counter? Design a 3-bit synchronous up/down CO5 12M counter.

	b	Compare ROM and RAM.	CO6	L1	6M
		OR			
10		Illustrate the PLA for the following Boolean function.	CO ₆	L3	12M
		(i) $F_1 = \sum m(0,1,3,4)$ (ii) $F_2 = \sum m(0,1,2,3,4,5)$			

a Define Moore model. Explain it with neat diagram.

UNIT-V

*** END ***

6M

CO6

L1

O.P.Code: 20CS0506

R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. II Year I Semester Supplementary Examinations October/November-2025 OBJECT ORIENTED PROGRAMMING THROUGH JAVA

(Common to CSIT, CSE, CCC & CIC)

T:		(Common to CSIT, CSE, CCC & CIC) 3 Hours	Moss	Man1	xs: 60		
1111	ıe:	(Answer all Five Units $5 \times 12 = 60$ Marks)	Max.	Mark	s: 60		
		UNIT-I					
1	a	Define data type? Discuss the data types available in java.	CO ₁	L6	6M		
	b	Develop a java program to read different data types using scanner.	CO1	L6	6M		
		OR					
2	a	What is an array? Classify the types of arrays in java.	CO1	L5	6M		
	b	Create a java program to read and display the array elements.	CO1	L5	6M		
	UNIT-II						
3	a	Define constructor? Classify the types of constructors in Java?	CO ₂	L5	6M		
	b	Write a java program to illustrate constructor overloading.	CO ₂	L3	6M		
		OR					
4	a	What is an abstract class? Discuss the cases to implement abstract class.	CO ₂	L6	6M		
	b	Give the differences between Abstract class and Interface.	CO ₂	L4	6M		
		UNIT-III					
5	a	Show about creating your own exception clauses.	CO ₃	L2	6 M		
	b	Develop a java program to create own exception for negative value	CO ₃	L6	6 M		
		exception if the user enter negative value.		572			
		OR					
6	a	Illustrate creating of thread in Java.	CO ₃	L3	6 M		
	b	Write a Java program that creates three threads. First thread displays	CO ₃	L2	6M		
		Good Morning, every one second, the second thread displays Hello,					
		every two seconds and the third thread displays Welcome, every three					
		seconds.					
		UNIT-IV					
7		Discuss in detail on collection interfaces and their methods.	CO4	L6	6M		
	b	List and describe about collection class in java.	CO4	L2	6M		
0		OR	004	Τ.	(M		
8	a	Interpret how to create a file in java with example program.	CO4	L6	6M		
	b	Develop a java program to show read and write a file in java with an	CO4	L2	6M		
	100	example program. UNIT-V					
0			COS	т 2	1234		
9		Apply an AWT based calculator with basic operations using java.	CO5	L3	12M		
10	c	OR Interpret the usage of Date and Time API with an example program.	CO5	L2	6M		
10		Discuss in detail the operations on Streams.	CO5	L2 L6	6M		
	IJ	*** END ***	003	LU	0141		

Q.P.Code: 20CS0511

R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. II Year I Semester Supplementary Examinations October/November-2025 PYTHON PROGRAMMING

		PYTHON PROGRAMMING			
Ti.	e ma	(Common to CSM, CAD & CAI) : 3 Hours	:	.100 7.0	
	ще	(Answer all Five Units $5 \times 12 = 60$ Marks)	Max.	Mark	rs: 60
				100	
		UNIT-I		8	2
-1	_	1 sale in the sale in the sale of the sale	CO ₁	L2	6M
	b	Illustrate the Input and Output statements with example.	CO ₁	L2	6M
		OR		, 4	
2		Explain about the Single-Valued data types in python.	CO ₂	L2	6M
	b	Discriminate about the Multi-Valued Data types with example.	CO ₂	L5	6M
8		UNIT-II	72	OA .	
3	a	Discuss the Membership and Identity operators with example.	CO ₂	L2	6M
		write a python program to find biggest number among three numbers.	CO1	L1	6M
		OR			177
4	a	Create a Python program to display Fibonacci series.	CO1	L6	6M
e is	b	Develop a Python program to Swapping of two numbers with and		L6	6M
		without using temporary variable.	2		1
ş.		UNIT-III			
5	a	Define function and explain the types of functions with an example.	CO3	L1	6M
	b	Discuss about key word arguments with example.	CO ₃	L2	6M
	à)	OR	E.	.0 .0	
6	a	What is Polymorphism? How will you perform Method Overloading?	CO ₄	L1	6M
	b	Illustrate Method Overriding in Python with suitable example.	CO4	L3	6M
		UNIT-IV	65	20.15	2.4
7	a	Describe about name spacing.	CO3	L2	6M
	b	Explain about the import statement in modules.	CO ₃	L2	6M
343		OR	5) 12		*x #
8	a	Write a python code using try-except-else-finally statement in python.	CO ₄	L3	6M
ä	b	llustrate matching with example program.	CO ₅	L2	6M
¥		UNIT-V	4		
9	a	Discuss about Maps in python.	CO6	L2	6M
	b	Describe the Filters in python.	CO6	L2	6M
		OR	230		OTAT
10	a	What is Data Management and Object Persistence? Explain in detail.	CO5	L1	6M

CO₄

L2

6M

O.P.Code: 20CE0105

R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. II Year I Semester Supplementary Examinations October/November-2025 BUILDING TECHNOLOGY

(Civil Engineering) Time: 3 Hours Max. Marks: 60 (Answer all Five Units $5 \times 12 = 60$ Marks) UNIT-I a Define foundation? What are the essentials of a good foundation? CO₁ L1 **6M b** Write the objectives of foundations and list the types of foundation. CO₁ L1 6M OR 2 Describe briefly spread footing with neat sketch. CO₁ L3 12M UNIT-II What is the purpose of flooring and what are the materials used for CO2 3 12M construction? OR Write short notes on Timber Flooring. CO₂ L1 12M UNIT-III 5 What is stair case? What are the technical terms used in construction? CO₃ L1 -12M a State briefly the requirements of good stair case. **CO3 6M b** Classify types of stairs and Explain CO₃ L1 6**M** ii) Half turn staircase i) Quarter Turn Staircase UNIT-IV Explain why ventilation is required. Describe briefly the factors CO4 7 12M affecting Ventilation. OR Summarize the Natural and Mechanical ventilation with neat sketches. L3 12M UNIT-V Describe briefly the factors to be considered for planning of lift CO5 9 installation invarious civil engineering structures. 10 a Explain briefly the machine room and its equipment of lifts. CO₅ L3 **6M b** List-out the lift safety features and describe briefly. CO₅ L2 **6M**

*** END ***

0.P.C	O.P.Code; 20ME0304	F			- 3 -	
	Control of the last of the las	1	1	7	*)	
	CAUTONIA INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)	Y:: PU	TTUR	==		8
B.Tec	B.Tech. II Year I Semester Supplementary Examinations October/November-2025 KINEMATICS OF MACHINERY	ovemb	er-202	ູນ		
Time	Time: 3 Hours (Mechanical Engineering)	1	,			
	(Answer all Five Units $5 \times 12 = 60 \text{ Marks}$)	Max	. Mar	Max. Marks: 60		-
,	UNITE	25			0	
1	Explain the inversions of single slider crank chain with neat sketch	C01	LI	12M		
2	and list out the practical applications of inversions?					
e . 7		C01	L2	W9		
Q .		C01	L2	M9		
	describe the working of Oscillating cylinder engine with neat sketch.				31 34	
3 a	Describe the watt mechanism with a nea		1.1	W		
q		CO2	1 1	E N		
	OR		1			Ē
4		C02	L4	M9		-
Q		C02	LI	M9		
-					25	
c a		C03	L1	M9		
•	mechanism? Explain one of them.	Ġ.				
q	How the Velocity of a Point on a Link can find by Relative Velocity	C03	L1	W9		
	Method.):			î
9	What do won understand to de					
	kinematic of machines? Answer briefts	C03	[1	W9		4
q is	Explain the following terms:	203	5	3	ě	20
	i) Instantaneous center ii) Body center and space centrode iii) Axode	S	77	WI9		
	AI-LIND	X.			*	
7 8	Construct the displacement, velocity and acceleration diagrams for a	C04	LS	W9		
٩	Construct the displacement violation of and another.					
	follower when it moves with uniform Acceleration and retordation	C04	LS	W 9	e Į	
	OR OR	я			2	
∞	It is required to set out the profile of a cam to give the following	C04	14	12M		
	motion to the reciprocating follower with a flat mushroom contact			. 1	55	
11	face			ů.		5
	Follower to have a stroke of 20 mm during 120° of o			2	::	
	(ii) Follower to return to its initial marking during 1900 of				×	Ď.
						Ī
3	The minimum radius of the cam is 25 mm. The out stroke of the					e
	follower is performed with simple harmonic motion and the return	i La		, . , .		
	stroke with equal unitorm acceleration and retardation.	×				

W9
L1
C05
to t
applied
as
'interference'
term
the
þ
understand
you
අ
What gears?
ca
6

CO5 L1 6M **b** Define the following terms relates to transmission of motion (i) Gear tooth contact ratio (ii) Condition for constant velocity ratio

Explain briefly the differences between simple, compound, and COS L1 12M epicyclic gear trains. What are the special advantages of epicyclic gear trains? 10

*** END ***

O.P.Code: 20EC0404

R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. II Year I Semester Supplementary Examinations October/November-2025 SIGNALS, SYSTEMS AND RANDOM PROCESSES

(Electronics & Communications Engineering)

Time: 3 Hours

Max. Marks: 60

(Answer all Five Units $5 \times 12 = 60$ Marks)

UNIT-I

Define and Explain the Following with an example.(i) Continuous time CO1 L1 12M and Discrete time signals(ii) Energy and Power Signal.(iii) Periodic and Aperiodic Signal(iv) Deterministic and Non-Deterministic Signal.

OR

2 a Define Stable and Unstable systems with an example.

CO1 L2 6M

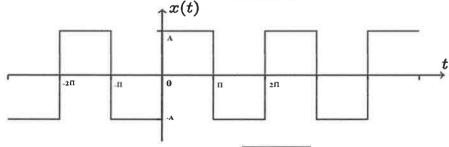
b Determine whether the following systems are stable or not.

CO1 L3 6M

- (i) y(t) = (t+5) u(t)
- (ii) $h(n)=a^n$ for 0 < n < 11

UNIT-II

a Explain about Fourier Transform of Periodic Signals.


CO₂ L₂ 6M

b State and prove the Linearity and Time Shifting properties of **CO2 L3 6M** Continuous time Fourier transform.

OR

4 Develop the Exponential Fourier Series for the given signal below

CO2 L3 12M

UNIT-III

- 5 a Define linear time invariant and linear time variant system with CO2 L2 6M necessary equations.
 - **b** State and Prove the Following Properties of LTI System.

CO2 L3 6M

(i) Distributive Property (ii) Associative Property.

OR

Consider a causal LTI system with frequency response $H(\omega)=1/4+j\omega$, for CO2 L3 6M a input x(t), the system is observed to produce the output $y(t)=e^{-2t}u(t)-e^{-4t}u(t)$. Find the input x(t).

UNIT-IV

7 Illustrate the inverse Laplace transform of the following.

CO₅ L₃ 12M

- (i) X(s) = 1/s(s+1)(s+2)(s+3)
- (ii) X(s)=s/(s+3)(s2+6s+5)

SIDDHARTH INSTITUTE OF	O.P.Code: 20CI0601
TITUTE OF ENGIN	R20
EERING &	H.T.No.
TECHNOLOGY::	
GY:: PUTTUR	

B.Tech. II Year I Semester Supplementary Examinations October/November-2025
PRINCIPLES OF OPERATING SYSTEMS

(Computer Science & Information Technology)

Time: 3 Hours

(Answer all Five Units 5 x 12 = 60 Marks)

Max. Marks: 60

Explain how operating system services are provided by system calls Difference between Monolithic kernel and Micro kernel C01 C01

L2

L2

₹ 6₹

Describe in detail about computing environments with a neat diagram. Discuss in detail the layers of the operating system structures

> C01 CO1 L2 **L2** 6**M 6M**

Examine the different multithreading models along with their issues.

C02

L3 L₂

<u>₹</u> **6**M

For the following processes with their CPU burst times, calculate the average waiting time and average turnaround time using Shortest Job C02

Next scheduling.

P4 P3 P2 Process Burst Time (ms) 9 w

OR

Describe the Inter Process Communication in client-server systems

Consider the following processes for scheduling

C02 L₃ M₂

C02

6M

P4 P3 P2 PI Process S 10 Burst Time (ms) Priority 4 U

using the Round Robin scheduling with a time quantum of 1 ms Calculate the average waiting time and turnaround time for the processes

	Un
	22
with a solution.	What is Process synchronizatio
	n? Explain the
	critical-section prol
	olem C
	C03
	L2
	M ₉

Discuss about Synchronization Hardware CO3 L₂ L_2

Explain in detail producer producer-consumer problem Describe about the recovery from deadlock. CO3 CO3 L₂

> 6M 6M

6M

Consider the following page reference string: 1, 2, 3, 4, 2, 1, 5, 6, 1, 2, 3, optimal page replacement algorithms, assuming two frames; 7, 6, 3, 2, 1, 2, $\dot{3}$, 1. How many page faults would occur for the LRU and C04 L3 6M

For the given page reference string 2, 1, 0, 3, 4, 0, 0, 0, 2, 4, 2, 1, 0, 3, 2. Write a short note on Virtual Memory How many page faults would occur if the working set policy were used C04 C04 L2 L3

6M

<u>M</u>

Difference between External fragmentation and Internal fragmentation? with a window size of 47? Show when each page fault would occur C04 L2 6M

How to solve the fragmentation problem using paging?

Explain about disk structure.

Suppose that a disk drive has 5000 cylinders, numbered 0 to 4999. The at cylinder 125. The queue of pending requests: 86, 1470, 913, 1774, moves to satisfy all the requests for FCFS disk-scheduling algorithm? 948, 1509, 1022, 1750, 130. What is the total distance that the disk arm drive is currently serving a request at cylinder 143, and the previous was **CO5** CO5 L3 L2

> § ₹ 6M

a Compare the C-LOOK and C-SCAN disk scheduling algorithms. moving in the direction of decreasing track number. Perform the Consider the queue of requests: 55, 58, 39, 18, 90, 160, 150, 38, 184, 27, 129, 110, 186, 147, 41, 10, 64, 120. The head is currently at 100 and is

> CO5 CO5

L3 L_2

8 6<u>M</u>

*** END ***

analysis for C-LOOK algorithm

O.P.Code: 20CS0507

R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. II Year I Semester Supplementary Examinations October/November-2025 OPERATING SYSTEMS

Time: 3 Hours (Common to CSE, CSM, CAD, CAI, CCC & CIC)		2000	
(Answer all Five Units $5 \times 12 = 60$ Marks)	Max.	Mark	ks: 60
UNIT-I	2		
1 a Evaluate different types of system calls in operating system.		w ^{ill}	
b Write notes on system programs.	CO1	L5	6 M
	CO1	L1	6M
2 a Explain Micro Kernel Operating system.	1.44	34 1	
b Determine concept of virtual machines.	CO1	L2	6M
·	CO1	L3	6 M
3 a Explain the Structure of user level thread and karnel level thread	e j. e		30
and kerner lever thread,	CO2	L4	6M
b List the Advantages of ULT and KLT.	CO ₂	L1	6M
OR			- 2
4 a Discuss about Thread Libraries.	CO ₂	L2	6M
b Difference between ULT and KLT.	CO ₂	- L2	6M -
UNIT-III	10 12	p (*	
5 a Describe in detail deadlock prevention.	CO ₃	. L3	6M
b Justify what is deadlock avoidance, explain briefly.	CO3	L4	6M
OR	×		4.0
6 a Summarize between Deadlock Detection and Recovery.	CO3	L2	6M
b Explain Banker's Algorithm.	CO3	L2	6M
UNIT-IV		~	UIVI
7 a Classify demand paging with example.	CO4	L4	CN A
b Dissect pagereplacement with example.	CO4	L4 L4	6M
OR	C04	L4	6M
8 a Compare all disk scheduling algorithms.	CO4	L5	CM
b Describe about disk management.	CO4	L3	6M
UNIT-V	. CO4	LZ	6M
9 a Describe in detail about Threats.	~~-		8 %
b Discuss in detail about intruders.	CO5	L2	6M
	CO5	L1	6M
OR 10 a Explain about secret key and public key cryptography.		- 8	
b Justify digital signature in detail.	CO5		6M
*** END ***	CO5	L6	6 M
END	. 1 a		

O.P.Code: 20CE0109

R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. II Year I Semester Supplementary Examinations October/November-2025 FLUIDMECHANICS

(Civil Engineering)

Tim	10.	3 Hours			
	LC.		Max.	Mar	ks: 60
	2	(Answer all Five Units $5 \times 12 = 60$ Marks) UNIT-I	e y	4	
1	30	Explain the following:	CO1	L2	12M
		i) Surface Tension ii) Vapour Pressure iii) Compressibility	COI		12111
		OR			c = 2 >
2	a	State Pascal's law and Derive pressure variation in liquid at rest.	CO1	TA	CNA
	b	Define the following terms:	CO1		6M
		i). Atmospheric Pressure ii). Absolute Pressure iii). Gauge pressure	CO1	L2	6 M
Si		iv). Vacuum pressure.			100
		UNIT-II	74	1 8 8	, on a
3		Explain in detail about Velocity Potential Function and write its properties.	CO2	L2	12M
0		OR			
4		Derive Continuity Equation in 3-Dimensional flow.	CO ₂	L3	12M
		UNIT-III	-		, A 14
5	2	Derive the Bernoulli's energy equation with assumptions	CO ₃	L3	12M
U.		OR		-3 -	, N
6	100	Derive the Expression for velocity measurement by Pitot tube and pitot	CO ₃	L3	12M
		static tube.			
		UNIT-IV		2.2	v * * 31
7	_	An oil of specific gravity 0.7 flowing through a pipe of 300mm at the	CO5	1.3	12M
		rate of 50lit/s. find the head lost due to friction and power required to			12.11
	1	maintain the flow for a length of 1000m & Take kinematic viscosity			
	(0.29 stoke?			
,		OR		10.8	~
8		Three pipes of lengths 800m, 500m & 400m & of dia 500mm, 400mm	CO5	L3	12M
	(x 300mm respectively are connected in series. These pipes are replaced			
100	ł	by a single pipe of length 1700m. Find the dia of the single pipe.		×	- 12 In
		UNIT-V		Tan I	
9	7	What is dimensionless number? Explain different types of numbers.	CO ₆	L2	12M
		OR			12111
10		Calculate	CO6	L2	12M *
	υİ) pressure gradient along flow			
		i) average velocity			
	i	ii) discharge for an oil of viscosity 0.02 Ns/m2 flowing between two		77	
	S	tationary parallel plates 1m wide maintained 10mm apart. The velocity	1		
	b	etween plates is 2m/s.	2		
		*** FND ***		-	

O.P.Code: 20ME0305

R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. II Year I Semester Supplementary Examinations October/November-2025 THERMAL ENGINEERING (Mechanical Engineering)

	—	(Mechanical Engineering)	19		
	Ti	me: 3 Hours	Max.	Marks	: 60
		(Answer all Five Units $5 \times 12 = 60 \text{ Marks}$)		17	
		UNIT-I	12	10	(5)
a d	Į	Derive the relation for Volumetric efficiency of a single stage reciprocating	CO1	L3	12M
		Compressor.		2: 2	1 4111
-	,	OR OR	×		7
2		a Explain the working of any two Rotary compressors with neat sketch.	CO1	L2	6M
		b Derive the relation for work done on single stage reciprocating compressor without Clearance.	CO ₁	L3	6M
			×		25 0
- 3		Davis the Control of	*	1	
3		Derive the expression for the efficiency of Brayton cycle in terms cycle	CO ₂	L3	12M
		parameters.			19
4		OR			Y 1
7		Explain various methods of Improving Brayton Cycle Efficiency.	CO ₂	L2	12M
5		Determine the thurst	* *		
J		Determine the throat area, exit area and exit velocity for a steam nozzle to	CO ₃	L3	12M
		pass 0.2kg/s when the inlet conditions are 12 bar and 2500C and final		3	
		pressure is 2bar. Assume that the expansion is isentropic and inlet velocity is negligible. Take n=1.3 for superheated steam.			
			-	0.012	5
6	2	Explain about super saturated flow in nozzles with neat sketch. And			
		represent in H-S diagram.	CO ₃	L2	6M
	ŀ	Derive an expression for critical pressure ration through nozzle.	COA	T 2	- N
		resolve ration through hozzic.	CO ₃	L3	6M
		UNIT-IV	50	e *	
7		Draw the combined velocity triangle of Impulse turbine and explain the	COA	T 4	103.5
		salient features.	CO4	L1	12M
		OR			
8	a	Derive an expression for work done in impulse turbine.	CO4	L3	6M
	b	Draw and explain the volcoity triangle of	CO4	L1	6M
			en A M		OIVI
		UNIT-V		g	. 1
9		Briefly explain the method of Measuring the following (i) Fuel	CO5	L5 j	12M
		Consumption. (11) Air intake (111) Exhaust gas composition (iv) Brake	3.20	3	TATAT
	Çe.	power (v) Indicated power (vi) Friction power.		A 12	
: [()	•	OR Write a brief wat 11 1			. 19
10	a	Write a brief note on the heat balance sheet.	CO5	L2	6M
¥	IJ	Explain the Working Principle of 2-Stroke Engine.	CO5	L2	6 M

O.P.Code: 20EE0204

R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. II Year I Semester Supplementary Examinations October/November-2025 ELECTROMAGNETIC FIELDS

		ELECTROMAGNETIC FIELDS		1	
T		(Electrical & Electronics Engineering) e: 3 Hours	1 0	. F	
	1111	(Answer all Five Units $5 \times 12 = 60$ Marks)	Max.	Mark	s: 60
		UNIT-I			
1		Transform the vector A= 3i-2j-4K at P (x=2, y=3, Z=3) to cylindrical coordinates.	CO1	, L3	12M
		OR		10	
2		If $B= y$ ax + (x+z) ay and a point Q is located at (-2,6,3) express B in	CO1	L3	12M
		spherical coordinates.	COL	LS	1211
8	Ä	UNIT-II	a a ,		
3	a	State and prove Gauss's law and write limitations of Gauss's law?	CO ₂	т 2	O.I.
**	b	Determine the force between the two charge Q1=4*10-4 C at A(2,3,4)	CO2	L3	6M
2.0		Q2=-2*10-4C at B(3,0,3) in vaccum.	CO2	L3	6M
		OR	T.		
4	a	A circular disc of 10 cm radius is charged uniformly with total charge of 100µc. Find E at a point 20cm on its axis.	CO2	L3	6M
×	b	Two pint charges 1.5nC at (0,0,0.1) and -1.5nC at (0,0,-0.1) are in free	CO2	L4	6M
		space. Treat the two charges as a dipole at the origin and find the potential	9		OIVI
d.		at p(0.3,0,0.4).	g of a		
		UNIT-III			
5	a	Derive the point form of ohms law.	CO3	L4	6M
	b	Derive the continuity equation. What is its physical significance?	CO3	L3	6M
×		OR	*		
6		Two parallel conducting discs are separated by distance 5 mm at z=0 and	CO3	L3	12M
		z=5 mm. If V=0 and V=100 v at z=5 mm, find the charge densities on the			12
90	Ţ,	disc.	9		9 9
		UNIT-IV	22	100	
7		Derive the expression for self-inductance of solenoid, toroid and coaxial	CO4	L4	12M
1.4		cable.		8	
		OR			
8		Calculate the inductance of a 10 m length of coaxial cable filled with a	CO4	L3 -	12M
		material for which $\mu r = 80$ and radii inner and outer conductors are 1 mm			
		and 4 mm respectively.		0	
		UNIT-V			
9			CO5	L3	12M
:		maxwell's equation in differential and integral form.			2
10		OR	55		
10		What is displacement current? Explain physical significance of displacement current.	CO5	L3	12M

O.P.Code: 20EC0405

R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

(AUTONOMOUS) B.Tech. II Year I Semester Supplementary Examinations October/November-2025 ANALOG COMMUNICATIONS

		ANALOG COMMUNICATIONS			40
	Ti	me: 3 Hours (Electronics & Communications Engineering)			
			M	3.0	
		(Answer all Five Units $5 \times 12 = 60$ Marks)	max.	war	ks: 60
	1	ITINITE I			
	_1	a Explain the elements of communication system with a neat block diagram.			
		diagram.	CO ₁	L2	6M
		b Define Amplitude Modulation Derive expression 6			g X
		b Define Amplitude Modulation. Derive expression for AM wave and sketch its frequency spectrum.	CO ₁	L2	6M
		* · · · · · · · · · · · · · · · · · · ·		8	-
	2	Preside the file of the control			
		b Explain the generation of AM wave using square-law modulator along with suitable diagram and analysis	CO ₁	L2	4M
		with suitable diagram and analysis.	CO1	L3	8M
		analysis.		LIJ	OTAT
	3	UNIT-II			٠,
	5	a What is DSB-SC Modulation? Explain the time and frequency domain expressions of DSB-SC wave.	001		
		expressions of DSB-SC wave.	COI	L2	8M
		b Define Hilbert Transform and List its properties.	001		77
~		On	CO1	L2	4M
	4	a With a neat block diagram explain the	-		9
		method using SSB and list the drawbacks.	CO ₁	L2	8M
		Dist the applications of VSB and its features			
		UNIGHT	CO1	L2	4M
4	5	a Define angle modulation. Classify different types of angle modulation and write their mathematical expressions.	=	#	
		and write their mathematical expressions.	CO1	L2	4M
		b Explain the block diagram of indi	4		4141
		b Explain the block diagram of indirect method in FM generation.	C O 1	L3	8M
6	5	·AD			OTAT
	-	a Compare between the AM & PM.	CO1]	L2	43.4
		THE WOLKING DITTICIDIE OF PL			4M
_		HINTT TY	.01	L3	8M
7		a Sketch and explain the functionality of each block is			G FR
			O1 I	_2	8M
	1	b Define Noise and its classification.			
		OB	O1 L	.2. 4	4M
8		Derive the expression for figure of merit of AM (DSB-FC) system.			
		and Agare of Meth of AM (DSB-FC) system.	O 1 L	3 1	2M
9	a	Define Analog pulso modul di		11.0	
12	b	Define Analog pulse modulation and its classification.	01 L	2 1	M
	~	The Bolletiul of FAW With mathematical and I	01 L		
10	a	OD	5 L	4 0	M
		The companions among PAW DU/M I DD)1 T	, ,	N AT
	U	All allalog signal hand limited to 10VII7:			M
)1 L3	י א	M
		Find Entropy & Rate of information.			
		*** FND ***			

O.P.Code: 20HS0864

R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. II Year I Semester Supplementary Examinations October/November-2025 HUMAN VALUES AND PROFESSIONAL ETHICS

8		HUMAN VALUES AND PROFESSIONAL ETHICS	CITT)		
7 1		(Common to AGE, CE, CSM, CIC, CCC, CSE, CAD, CAI & C		B/C = =1	. 60
Tin	ıe:	3 Hours (Answer all Five Units $5 \times 12 = 60 \text{ Marks}$)	wax.	Marks	: 60
				**	-
		UNIT-I	18	6."	
1		What is service learning? Why is service learning important?	CO ₁	L1	6M
	b	What are the important characteristics of service learning?	CO ₁	L1	6M
		OR			h.)
2	a	List some time wasters identified by Engineers.	CO ₁	L1	6M
	b	What is meant by spirituality? How does it differ from religion?	CO ₁	L1	6M
		UNIT-II			7.1
3	a	Outline ethics. Describe any four disciplines of ethics.	CO ₂	L2	6M
	b		CO2	L1	6M
	D	OR	002	LI	UIVI
4		Describe utilitarianism and two versions of utilitarianism.	CO2	L2	6M
4			CO ₂	L2 L1	6M
	D	What are the similarities between duty ethics and right ethics?	COZ	LI	OIVI
		UNIT-III			34
- 5	a	Write any five ways in which of promoting ethics by the engineering	CO ₃	L1	6 M
		societies.			
	b	What are the objections of codes of ethics?	CO ₃	- L1	6M
		OR			
6	a	What are the problems associated with the laws in engineering?	CO ₃	L1	6M
	b	Enumerate the correct role of law in engineering.	CO ₃	L3	6 M
		UNIT-IV			20
7	ล	Write the factors that influence the perception of risk.	CO4	L1	6M
o d		What are the job related risks?	CO4	L1	6M
	N	OR		2.1	01,1
8	9	What are occupational crimes? Explain.	CO4	L1	6M =
. 0		Define whistle blowing. What are the categories of whistle blowing?	CO4	L2	6M
	D	UNIT-V			OIVI
			005	12	C 3 5
9	a	Write about Sentient-Centered ethics and IEEE code of Ethics.	CO5	L1	6M
	b	Write about Human-Centered environmental ethics.	CO ₅	L1	6 M
	0.0	OR		3.	- 66
10	a	What is meant by computer ethics? Explain how the computers can be	CO5	L1	6 M
		used as the instrument of unethical behavior.			
	b	Write short notes on Hacking and Computer virus.	CO ₅	L1	6M
		*** END ***	- 1		

O.P.Code: 20CS0504

R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. II Year I Semester Supplementary Examinations October/November-2025 COMPUTER ORGANIZATION & ARCHITECTURE

(Common to CSE, CSM, CIC, CAD, CCC, CSIT & CAI)

Ti	me	e: 3 Hours	Max.	Mar	ks: 60
		(Answer all Five Units $5 \times 12 = 60$ Marks)		3	
		UNIT-I			
1	a	Sketch the basic functional units of computer.	CO ₁	L3	4M
	b	Explain the functional units in the computer.	CO ₂	L2	8M
		OR			
2	a	Identify and explain various Phases of instruction cycle.	CO1	L3	10M
	b	List the Classification of Computer Instructions.	CO ₂	L2	2M
		UNIT-II	*		par .
3		Explain the Flow chart for Addition and Subtraction.	CO1	L2	12M
		OR		- 13	8
4		Develop flowchart for the addition/subtraction of floating-point number	CO ₃	L4	12M
		and illustrate with an example.			
		UNIT-III			
5	a	Construct a 4-line common bus system with a neat diagram.	CO3	L3	6M
	b	Explain Bus line with three state buffers.	CO3	L2	6M
		OR			
6	a	What is Hardwired Control? Explain in detail with a neat diagram.	CO6	L2	8M
(0)	b	Differentiate between Hardwired Control and Micro-programmed	CO6	L2	4M
		Control,			
		UNIT-IV		12	
7		Explain how memories connected with CPU with diagram.	CO3	L2	12M
		OR			
8	a	What is cache memory What is hit and miss in the cache memory.	CO ₄	L3	8M
	b	List and Explain different mapping in Cache memory.	CO ₄	L2	4M
		UNIT-V			
9	a	Construct 4-segment Instruction Pipeline and explain.	CO5	L3	6M
		Explain the three major difficulties caused by the branch instruction in		L2	6M
		the instruction pipeline.		4	
		OR			
10	a	Explain cross bar switch with neat sketch.	CO6	L2	6M
1	b	Explain 2D mesh network with neat diagram.	CO6	L2	6M
		*** END ***			

O.P.Code: 20CE0160

turbine? Explain.

R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. II Year I Semester Supplementary Examinations October/November-2025 FLUID MECHANICS & HYDRAULIC MACHINERY

(Mechanical engineering) Time: 3 Hours Max. Marks: 60 (Answer all Five Units $5 \times 12 = 60$ Marks) UNIT-I a Explain the terms of compressibility and bulk modulus. **CO1** L2 6M b Obtain an expression for capillary rise of a liquid. **CO1** L2**6M** OR 2 Derive the expression for pressure difference in U-tube differential CO1 L3 12M manometer and Inverted U-tube differential manometer with neat sketches. UNIT-II 3 Explain different types of flow in detail. CO₂ L2 12M Water flows through a pipe AB 1.2 m diameter at 3 m/s and then passes CO₂ L3 12M through a pipe BC 1.5 m diameter. At C, the pipe branches. Branch CD is 0.8 m in diameter and carries one third of the flow in AB. The flow velocity in branch CE is 2.5 m/s. Find the volume rate of flow in AB, the velocity in BC, the velocity in CD and the diameter of CE. UNIT-III 5 Explain about Venturimeter with neat sketches. Derive expression for CO3 L₂ **12M** rate of flow through Venturimeter. OR 6 Explain about orifice meter with neat sketches. Derive expression for CO3 L₂ 12M rate of flow through orifice meter. UNIT-IV A jet of water of diameter 50mm moving with a velocity of 25 m/s CO4 12M impinges on a fixed curved plate tangentially at one end at an angle of 30° to the horizontal. Calculate the resultant force of the jet on the plate if the jet is reflected through an angle of 50° . Take g = 10 m/s2OR 8 Explain the various elements of hydroelectric power station with a neat **CO4 L2** 12M sketch. UNIT-V Explain the working principle of a Pelton wheel with a neat sketch and CO5 12M also derive equation for hydraulic efficiency. 10 What is the working principle and design specifications of a Kaplan CO5 L1 12M

*** END ***

O.P.Code: 20EC0446

R20

H.T.No.

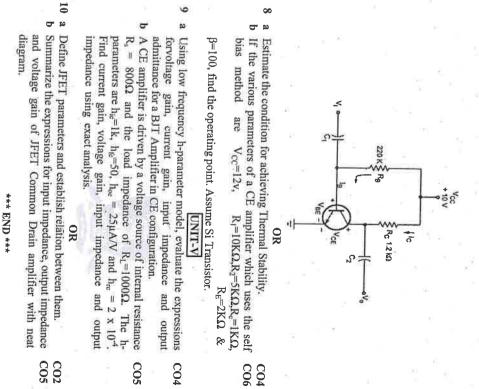
SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

(AUTONOMOUS) B.Tech. II Year I Semester Supplementary Examinations October/November-2025 ANALOG ELECTRONIC CIRCUITS

		Thribod Edectronic Circuits			
Тi	me	(Electrical & Electronics Engineering)	200		ed)
		(Answer all Five Units $5 \times 12 = 60$ Marks)	Max.	Marl	s: 60
		UNIT-I			
1	. (Define feedback and illustrate the basic concept of Feedback with suitable block diagram.	CO1	L2	6M
	1	List different types of feedback and discuss.	CO1	L1	CM
		OR	COI	L	6 M
2		Show that how a negative feedback reduces gain of an amplifier.	CO1	L2	CN/I
	- J	An amplifier has open loop gain 1000 and feedback ratio of 0.04, if the	CO1	L2 L2	6M 6M
		open loop gain changes by 10% due to temperature, find the percentage	COI	LL	OTAT
s - 3		change in the gain of the amplifier feedback.		74	
		UNIT-II			-
3	a	Define Oscillator and explain its principle of operation.	CO1	L2	6M
	b	Illustrate the condition for oscillation with suitable diagram.	CO1	L1	6M
		OR		9	il.
4	a		CO ₁	L2	8M
		for its frequency of oscillation.			
	D	Compare piezoelectric effect and inverse piezoelectric effect with a neat	CO ₆	L2	4M
		diagram.			
_		Device the control of UNIT-III			
5	a	Derive the expression for gain of inverting amplifier.	CO ₅	L3	6M
_		What is voltage follower? What are its features and applications? OR	CO1	L1	6M
6	a	the different mode gain, common mode gain, Civici.	CO ₂	L1	6M
	b	Explain DC characteristics of op-amp.	CO ₃	L2	6M
		UNIT-IV	31.		
7	a	Design and explain the operation of non-inverting summing amplifier.	CO ₃	L3	6M
	b	and delive the expression	CO ₁	L3	6M
		for voltage gain.			i.h.
8		OR	20	3.7	
O	а	Explain the operation of integrator using op-amp with a neat circuit diagram.	CO ₅	L3	6M
	b	Explain the operation of monostable multivibrator using op-amp, with a	CO2	L2	6M
		neat circuit and its waveforms.	002		0111
		UNIT-V			
9	a	Draw the frequency response of filters.	CO1	L3	6M
	b	Explain the first order high pass butter worth filter with a neat circuit	CO ₂	L2	6M
		diagram.			
10		OR	92		
10	a 1.	Explain about the flash type ADC using op-amp.	CO1	L2	6M
	D	Summarize the truth table for a flash type op-amp ADC using 8 by 3	CO ₄	L2	6M
		priority encoder.			

*** END ***

O.P.Code: 20EC0402 R20 H.T.No.


SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. II Year I Semester Supplementary Examinations October/November-2025

ELECTRONIC DEVICES AND CIRCUITS

(Electronics & Communications Engineering)

4			6 2	υ ₁ .		4		(J)	Š		2		le.		1		Tin
				ъ	-	,ea .ca	_		2	o d	20	Д	C	Ь	22		ıe:
For the circuit shown in the Figure, solve I_B,I_C,V_{CE},V_B , V_C and $V_{BC}.$ Assume that $V_{BE}=0$ and $\beta=50.$	Explain Collector to Base bias of a Transistor with neat circuit diagram and determine Q-point.	Compare the performance of JFET with MOSFET. UNIT-IV	Explain the characteristics of N-Channel enhancement type MOSFET.	Evaluate the relation between α and β of a Transistor. With a neat diagram, explain how a transistor acts as an amplifier.	List the advantages and applications of LCD. With neat diagram, explain the working of LED and advantages and applications.	OR Give the classification of LCD based on construction and applications of the classification of the classif	_			_				Define the ter	a Describe the construction of PN Junction Diode	N 12	Time: 3 Hours
			ent type	mplifier.	d list its		Value of Full Wave	th the help	Orogo and	inals.		7	rward bias			= 60 Marks)	ering)
C05	C05	C01	C01	CO2	C03	C01	C05	C04		601	603	3	C01	CO1	3	man.	May
L3	L2	11	L2	L3 L1	13	1 1	13	L1	Ę	11	[2	13	[1		:	TATOTA	Mark
6M	6M =	M9	M9	M9 M9	M9	2M	4M	6M	4141	2M	M M	2	A M	3M	27.7	man. mains: 00	5

L3

6M M

L1 L2

. 8M

L3

6M

 L_2

O.P.Code: 20CE0164

R20

H.T.No.

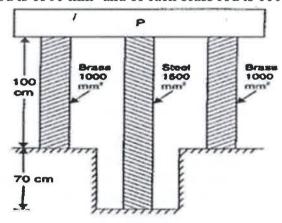
SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. II Year I Semester Supplementary Examinations October/November-2025 MECHANICS OF SOLIDS

(Common to AGE & ME)

Time: 3 Hours

Max. Marks: 60


L3

8M

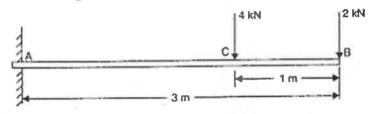
(Answer all Five Units $5 \times 12 = 60$ Marks)

UNIT-I

- 1 a Draw and explain Stress-strain curve for a mild steel bar.
 b Explain maximum shear stress theory.
 CO1 L1 6M
 CO1 L2 6M
 - OR
- 2 a Two brass rods and one steel rod together support a load as shown in figure 1. If the stresses in brass and steel are not to exceed 60 N/mm² and 120 N/ mm², find the safe load that can be supported. Take E for steel = $2x10^5$ N/ mm² and for brass = $1x10^5$ N/ mm². The cross-sectional area of steel rod is 1500 mm² and of each brass rod is 1000 mm²

		Fig:1			
	b	Explain maximum principal strain theory.	CO ₁	L2	4M
		UNIT-II			
3	a	A cantilever beam of length 3 m carries a uniformly distributed load of	CO ₂	L3	6M
		1.5 kN/m run over a length of 2 m from the free end. Draw SFD and			
		BMD for the beam.			
	b	Draw the shear force and bending moment diagram for a simply	CO ₂	L3	6M
		supported beam of length 9m and carrying a uniformly distributed load			
		of 10 kN/m for a distance of 6 m from the left end. Also calculate the			
		maximum bending moment in the section.			
		OR			
4	a	State the assumptions made in the theory of simple bending.	CO ₂	L2	4M
	b	A square beam 20 mm x 20 mm in section and 2 m long is supported at	CO ₂	L3	8M
		the ends. The beam fails when a point load of 400 N is applied at the			
		centre of the beam. What uniformly distributed load per metre length			
		will break a cantilever of the same material 40 mm wide, 60 mm deep			
		and 3 m long?			
		with 2 111 1011B.			

UNIT-III


- 5 a Derive shear stress distribution formula for circular section with a neat CO3 L2 6M sketch.
 - **b** A timber beam of rectangular section is simply supported at the ends and carries a point load at the centre of the beam. The maximum bending stress is 12 N/mm² and maximum shearing stress is 1 N/mm², find the ratio of the span to the depth.

OR

- 6 a Derive pure torsion equation for a circular shaft with assumptions. CO3 L2 6M
 - **b** A hollow shaft, having an inside diameter 60% of its outer diameter, is to replace a solid shaft transmitting the same power at the same speed. Calculate the percentage saving in material, if the material to be used is also the same.

UNIT-IV

A cantilever of length 3 in carries two-point loads of 2 KN at the free end and 4 KN at a distance of 1 m from the free end. Find the deflection at the free end. Take $E = 2 \times 10^5 \text{N/mm}^2$ and $I = 10^8 \text{ mm}^4$

OR

- A solid round bar 3 m long and 5 cm in diameter is used as a strut with CO4 L3 12M both ends hinged. (Take $E = 2.0 \times 10^5 \text{ N/mm}^2$). Determine the crippling load, when the given strut is used with the following conditions:
 - (i) One end of the strut is fixed and the other end is free
 - (ii) Both the ends of strut are fixed
 - (iii) One end is fixed and other is hinged.
 - (iv) Both the ends of strut are hinged

UNIT-V

- 9 a Derive expression for circumferential stress in thin cylinder. CO5
 - **b** A cylindrical pipe of diameter 1.5m and thickness 1.5cm is subjected to an internal fluid pressure of 1.2 N/mm². Determine: (i) Longitudinal stress developed in the pipe, and ii) Circumferential stress developed in the pipe.

OR

A closed cylindrical vessel made of steel plates 4 mm thick with plane and, carries fluid under a pressure of 3 N/ mm². The dia. of cylinder is 30 cm and length is 80 cm, calculate the longitudinal and hoop stresses in the cylinder wall and determine the change in diameter, length and volume of the cylinder. Take $E = 2 \times 10^{5} \text{ N/ mm}^{2}$ and Poisson's ratio is 0.286.

*** END ***

L3

L3

L3

L2

L₃

L3

CO5

6M

6M

12M

CO₃

6M

6M

12M

0.	P .	Code: 20CE0103 R20 H.T.No.	-		
		SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY	Y:: PUT	TUR	
B.1	`ec	(AUTONOMOUS) h. II Year I Semester Supplementary Examinations October/No	vembe	r-202	5
		STRENGTH OF MATERIALS			
Ti	me	(Civil Engineering)	Max.	Mark	s: 60
		(Answer all Five Units $5 \times 12 = 60$ Marks)			
		UNIT-I			
1		Draw shear force and bending moment diagrams for the beams shown in figure. Indicate the numerical values at all important sections.	CO1	L3	12 M
		Shown in figure. Indicate the numerical values at an important sections.			
		5m 2.5m 5m 2.5m			
		OR			
2		Define shear force and bending moment.	CO1	L1	4 M
	b	A cantilever beam of 2 m span is subjected to a gradually varying load	CO1	L3	8 M
		from 2kN/m to 5 KN/m as shown in figure. Draw the shear force and bending moment diagrams for the beam.			
		5 kN/m			
		$\frac{1}{B}$			
		2111			
		UNIT-II			
3		Three beams have the same length, the same allowable stress and the	CO2	L4	12 M
J		same bending moment. The cross-section of the beams, are a square, a	CO2	L	12 111
		rectangle with depth twice the width and a circle as shown in Figure.			
		Find the ratios of weights of the circular and the rectangular beams			
		with respect to the square beam.			
		OR			
4	a	Derive the formula for horizontal shearing when a beam is subjected to	CO ₂	L2	6 M
		transverse loading.			
	b	Draw the shear stress distribution for a rectangular section of width 'b' and depth 'd'.	CO2	L3	6 M
		and depth d.			

A solid circular shaft transmits 75 kW power at 200 r.p.m. CO3 5 **L3** 12 M Calculate the shaft diameter, if the twist in the shaft is not to exceed 1° in 2 metres length of shaft, and shear stress is limited to 50 N/mm². Take $C = 1 \times 10^5 \text{ N/mm}^2$.

An open coil helical string made of 10 mm diameter wire and mean CO3 L3 12 M diameter of 100 mm has 12 coils, angle of helix being 15°.

Determine the axial deflection and the intensities of bending and shear stresses under an axial load of 500 N. Take C as 80 GPa and E as 200 GPa.

UNIT-IV

A timber beam of rectangular section has a span of 4.8 m and is simply countries as supported at its ends. It is required to carry a total load of 45 KN uniformly distributed over the whole span. Find the value of the breadth (b) and depth (d) of the beam, if maximum bending stress is not to exceed 7 Mpa and maximum deflection is limited to 9.5 mm.

Take E for the timber as 10.5 GPa.

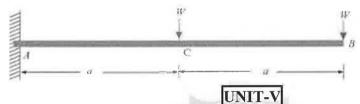
OR

CO4

CO₅

L3

L3

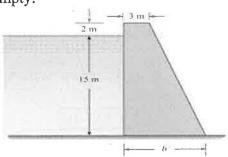

L3

12 M

12 M

12 M

A cantilever of length 2a is carrying a load of W at the free end, and another load of W at its centre as shown in the figure. Determine, by Moment Area Method, the slope and deflection of the cantilever at the free end.



- A bar of length 4 m when used as a simply supported beam and subjected to a UDL of 30 KN/m over the whole span, deflects 15 mm at the centre. Determine the crippling loads when it is used as a column with following end conditions:
 - (i) Both ends pin- joined ii) One end fixed and other end hinged (iii) Both ends fixed.

OR

A concrete dam has its upstream face vertical and a top width of 3 m. Its downstream face has a uniform batter. It stores water to a depth of 15 m with a free board of 2 m as shown in figure. The weights of water and concrete may be taken as 10 KN/m³ and 25 KN/m³. Calculate

(a) the minimum dam width at the bottom for no tension in concrete. Neglect uplift. (b) the extreme intensities of pressure on the foundation, when reservoir is empty.

O.P.Code: 20HS0834

R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. II Year I Semester Supplementary Examinations October/November-2025 NUMERICAL METHODS AND TRANSFORMS

(Electronics & Communications Enigneering)

Time: 3 Hours

Max. Marks: 60

(Answer all Five Units $5 \times 12 = 60$ Marks)

UNIT-I

a Describe the formula for square root of a number by Newton-Raphson CO2 **4M** formula.

CO₂ L3 8M Find a positive root of x^3 - x -1 = 0 correct to two decimal places by Bisection method.

a Write the formula for Newton's forward interpolation formula. CO₂ L1 2M**b** From the following table values of x and y=tan x. Interpolate values of y **CO2** 10M when x=0.12 and x=0.28

	х	0.10	0.15	0.20	0.25	0.30
Ī	у	0.1003	0.1511	0.2027	0.2553	0.3093

UNIT-II

a State Taylor's series formula for first order differential equation.

CO3 2ML1

b Tabulate y(0.1), y(0.2) and y(0.3) using Taylor's series method given CO3 that $v^1 = v^2 + x$ and v(0) = 1.

10M

6M

6M

OR

Evaluate $\int_{1}^{1} \frac{1}{1+x} dx$ (i) by Trapezoidal rule and Simpson's $\frac{1}{3}$ rule. (ii) using

L5 12M

Simpson's $\frac{3}{6}$ rule and compare the result with actual value.

UNIT-III

a What is the linear property of Laplace transform. Find the Laplace transform of

CO4 L1

 $f(t) = e^{3t} - 2e^{-2t} + \sin 2t + \cos 3t + \sinh 3t - 2\cosh 4t + 9.$

b Find the Laplace transform of $f(t) = \cosh at \sin bt$.

L3 CO₄ **6M**

OR

Find the Inverse Laplace transform of $\frac{1}{s(s^2 + a^2)}$.

CO4 L3

Find $L^{-1} \left\{ s \log \left(\frac{s-1}{s+1} \right) \right\}$.

CO₄ **L5 6M**

UNIT-IV

Using Laplace transform method to solve $y^{11} - 3y^1 + 2y = 4t + e^{3t}$ where **CO5** $v(0) = 1, v^{1}(0) = 1.$

8 Find a Fourier series to represent the function $f(x) = e^x$ for $-\pi < x < \pi$. CO5 L3 12M And hence derive a series for $\frac{\pi}{\sinh \pi}$.

- Find the Fourier transform of $f(x) = \begin{cases} 1; |x| < a \\ 0, |x| > a \end{cases}$ and hence evaluate
 - i) $\int_{-\infty}^{\infty} \frac{\sin ap \cos px}{p} dp$ ii) $\int_{-\infty}^{\infty} \frac{\sin p}{p} dp$ iii) $\int_{0}^{\infty} \frac{\sin p}{p} dp$.
- 10 Find the Fourier sine and cosine transforms of $f(x)=e^{-ax}$, a>0 and hence CO6 L5 12M deduce the integrals (i) $\int_0^\infty \frac{p\sin px}{a^2+p^2} dp$ (ii) $\int_0^\infty \frac{\cos px}{a^2+p^2} dp$.

 *** END ***

O.P.Code: 20HS0832

R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. II Year I Semester Supplementary Examinations October/November-2025 PROBABILITY, NUMERICAL METHODS AND TRANSFORMS

(Electrical & Electronics Engineering)

Time: 3 Hours

Max. Marks: 60

(Answer all Five Units $5 \times 12 = 60$ Marks)

UNIT-I

a State and prove addition theorem on probability.

CO₁ L2 **6M**

b Two dice are thrown. Let A be the event that the sum of the point on the faces is 9. Let B be the event that at least one number is 6.

CO₁ L2 **6M**

Find (i) $P(A \cap B)$ (ii) $P(A \cup B)$ (iii) $P(A^c \cup B^c)$ (iv) $P(A^c \cap B^c)$

and (v) P($A^c \cap B$)

OR

2 a State the Bayes' theorem.

CO₁

CO₁

L1**6M**

6M

L3

b In a bolt factory machines M_1, M_2, M_3 manufacture 25%, 35% and 40% of the total. Of their output 5%, 4% and 2% are defective bolts. A bolt is drawn at random from the product and is found to be defective. What are the probabilities that it was manufactured by machines A,B,C

UNIT-II

3 Find a root of the equation $x \log_{10} x = 1.2$, using the CO2 12M L3 Newton's Raphson method correct to 4 decimal places.

4 Using Newton's forward & backward interpolation formulae, find y(3.2) and y(8.8)

CO₂

L4 12M

X	3	4	5	6	7	8	9
У	4.8	8.4	14.5	23.6	36.2	52.8	73.9

Apply Taylor's series method, $\frac{dy}{dx} = 2x + y^2$; y(0) = 1, find the 5 values of y(0.1) and y(0.2).

12M

12M

6 Evaluate $\int_{0}^{32} \log x dx$ by (a) Trapezoidal rule b) Simpson's 1/3

CO₃ L3

rule (c) Simpson's 3/8 rule

x	¥.	4	4.2	4.4	4.6	4.8	5.0	5.2
y = log	gx	1.3863	1.4351	1.4816	1.5261	1.5686	1.6094	1.6487

a Find the Laplace transforms of (i) $t^5 e^{-2t}$ and (ii) e^{3t} cost

CO₄

6M

Find the Laplace transforms of $f(t) = \int e^{-t} \cos t \, dt$

L3 CO₄ **6M**

8	a Find $L^{-1}\left(\frac{3s-2}{(s^2-4s+20)}\right)$	CO4	L3	6M
	Using Convolution theorem, Find $L^{-1}\left(\frac{1}{(s+a)(s+b)}\right)$	CO4	L3	6M
	UNIT-V			
9	Solve the following differential equation using Laplace transform:	CO5	L4	12M
	$y'' + 2y' + y = 3te^{-t}$ $y(0) = 4$; $y'(0) = 0$			
	OR			
10	a Find the Z-transform of the following:	CO ₅	L3	6M
	(i) na^n (ii) n^2a^n (iii) $\cos n\theta$			
	Find the inverse Z-transform of the $\frac{2z^2+3z}{(z+2)(z-4)}$	CO5	L3	6M
	*** END ***			

O.P.Code: 20HSO833

R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. II Year I Semester Supplementary Examinations October/November-2025 NUMERICAL METHODS, PROBABILITY & STATISTICS

(Mechanical Engineering)

Time: 3 Hours

3

Max. Marks: 60

6M

12M

6M

6M

(Answer all Five Units $5 \times 12 = 60$ Marks)

UNIT-I

- a Find a real root of the equation $3x = e^x$ by Bisection method up to 9 **CO1** L1 **6M** iterations.
 - CO₁ L2 **b** Find a positive real root of $x \log_{10} x = 1.2$ using Regula-Falsi method in three iterations.

OR

a Using Newton-Raphson method, find the square root of 28. CO₂ L2 **6M b** Use Newton's backward interpolation formula to find f(32) given that CO₁ L3 **6M**

f(25)=0.2707, f(30)=0.3027, f(35)=0.3386, f(40)=0.3794.

CO₃ L3 **12M**

Find the values of y(0.1), y(0.2) and y(0.3) using Taylor series method given that $y' = y^2 + x$, y(0) = 1

4 Apply the fourth order R-K method to find the values of y(0.1) and CO₃ L3 y(0.2), given that $\frac{dy}{dx} = xy$, y(0) = 1.

- a The weights of 6 competitors in a game are given below **L2 6M** 58,62,56,63,55,61 kgs. Find arithmetic mean, mode and median of weight of competitors.
 - b The first four moments of a distribution about the value 5 of the CO4 variables are 2, 20, 40 and 50. Calculate mean, variance, β_1 and β_2 of the distribution.

OR

a State and prove the Addition theorem of probability

CO4 L2 **6M** L2

CO₄

L5

b In a certain town 40% have brown hair, 25% have brown eyes and 15% have both brown hair and brown eyes. A person is selected at random from the town. i) If he has brown hair, what is the probability that he has brown eyes also? ii) If he has brown eyes, determine the probability, that he does not have brown hair?

UNIT-IV

A random variable x has the following probability distribution function 7

CO5 12M

x	-3	-2	-1	0	1	2	3
P(x)	k	0.1	k	0.2	2k	0.4	2k

Find i) k ii) Mean iii) Variance iv) $P(-3 \le x \le 2)$

8 The Probability density function of a random variable CO₅ 12M is $f(x) = \begin{cases} 2e^{-2x}, & \text{for } x > 0 \\ 0, & \text{for } x \le 0 \end{cases}$. Find the mean, the Probabilities that it will

take on a value (i) Between 1 & 3 (ii) Greater than 0.5.

UNIT-V

In a sample of 1000 cases, the mean of certain test is 14 and standard CO5 deviation is 2.5. Assuming the distribution to be normal find (i) how many students score between 12 and 15. (ii) How many students score above 18? (iii) How many students score below 18?

L3 12M

Find two regression equations from the following data: 10

CO6

L3 12M

\boldsymbol{x}	10	25	34	42	37	35	36	45
y	56	64	63	58	73	75	82	77

*** END ***

O.P.Code: 20ME0315

R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. II Year I Semester Supplementary Examinations October/November-2025 HEAT & MASS TRANSFER

		HEAT & MASS TRANSFER			
		(Agricultural Engineering)	3/1	3.e1	- 60
Tir	ne	3 Hours	Max.	Mark	s: 60
		(Answer all Five Units 5 x 12 = 60 Marks) UNIT-I			
1	a	What is conduction heat transfer? Explain its parameters	CO ₁	L1	6M
	b	A plane wall is 150 mm thick and its wall area is 4.5 m ² . If its conductivity is 9.35 W/m °C and surface temperature are steady at 150°C and 45 °C, determine i). Heat transfer across the plane wall, ii). Temperature gradient in the flow direction.	CO1	L4	6M
_		OR	001		463.5
2		Derive the general heat conduction equation in Cylindrical coordinate. UNIT-II	CO1	L3	12M
3	a	Obtain the expression of heat conduction through hollow cylinder	CO ₂	L3	6M
	b	A spherical shaped vessel of 1.4 m diameter is 90 mm thick. Find the rate of heat leakage, if the temperature difference between the inner and outer surface is 220 °C. Thermal conductivity of the material of the sphere is 0.083 W/m °C.	CO2	L4	6M
		OR			
4	a	Write short note on transient heat conduction	CO ₂	L1	6M
	b	A steel ingot (large in size) heated uniformly to 745 °C is hardened by quenching it in an oil bath maintained at 20 °C. Determine the length of time required for the temperature to reach 595 °C at a depth of 12 mm. The ingot may be approximated as a flat plate. For steel ingot take α (thermal diffusivity) = 1.2×10^{-5} m ² /s.	CO2	L4	6M
5		Air at 20 °C and at a pressure of 1 bar is flowing over a flat plate at a	CO3	L4	12M
		velocity of 3 m/s. If the plate is 280 mm wide and at 56 °C. Calculate the following quantities at $x=280$ mm, given that properties of air at the bulk mean temperature °C are $\rho=1.1374$ kg/m³, $k=0.02732$ W/m °C, cp = 1.005 kJ/kg K, $\upsilon=16.76x10^{-6}$ m²/s, $Pr=0.7$. i) Boundary layer thickness ii) Local friction coefficient iii) Average friction coefficient iv) Thickness of the boundary layer v) Local convective heat transfer vi) Average convective heat transfer vii) Rate of heat transfer by convection viii) Rate of convective heat transfer			
		OR			
6		A cylinder body of 300 mm diameter and 1.6 m height is maintained at a	CO ₃	L4	12M

A cylinder body of 300 mm diameter and 1.6 m height is maintained at a CO3 L4 12M constant temperature of 36.5 °C. The surrounding temperature is 13.5 °C. Find out the amount of heat to be generated by the body per hour if $\rho = 1.025 \text{ kg/m}^3$, $\nu = 15.06 \times 10^{-6} \text{ m}^2$ /s, $\epsilon = 0.96 \text{ kJ/kg}$ °C and $\epsilon = 0.0892 \text{kJ/mh}$
		UNIT-IV			
7	a	Mention correlation in boiling with proper expression	CO4	L3	6M
	b	Discuss the different types of processes for condensation of vapours on a solid surface.	CO4	L3	6M
		OR			
8		Calculate the following for an industrial furnace in the form of black body and emitting radiation at 2500 °C. (i) Monochromatic emissive power at 1.2 µm length, (ii) Wave length at which the emission is maximum, (iii) Maximum emissive power, (iv) Total emissive power, (v) Total emissive power of the furnace if the assumed as a real surface with emissivity equal to 0.9. UNIT-V	CO4	L5	12M
9		Derive the expression for Logarithmic Mean Temperature Difference (LMTD) in case of counter flow.	CO5	L3	12M
		OR			
10	a	Explain correlation for mass transfer.	CO ₆	L2	6M
	b	List out the application of Mass Transfer.	CO ₆	L1	6M
		*** END ***			

Q.P.Code: 20HS0845 R20 H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. II Year I Semester Supplementary Examinations October/November-2025 MATHEMATICAL AND STATISTICAL METHODS

	MATHEMATICAL AND STATISTICAL METHODS			
77 1	(Common to CSM, CAI, CIC, CAD & CCC)	ax. Ma	rke i	60
Time:	3 Hours (Answer all Five Units $5 \times 12 = 60 \text{ Marks}$)	A. Hic	LES.	00
	UNIT-I			-
∘1 €	a Define the greatest integer function. By using the principle of	CO1	L5	· 6M
	mathematical induction, prove $1^3 + 2^3 + 3^3 + \cdots + n^3 = \left(\frac{n(n+1)}{2}\right)^2$.		15	
	mathematical induction, prove $1+2+3++n=\frac{2}{2}$		ñ	
	b By the principle of mathematical induction, show that $3^{4n+2} + 5^{2n+1}$ is a	CO1	L1	6M
	multiple of 14, for all positive integral value of n including zero.	27	3	
	a Using Euclidean algorithm express 4076 and 1024 has a linear	COL	Ι2	6M
2	combination.	COI		OIVI
	b Define division algorithm and find the gcd (414, 662) using Euclidean	CO1	L3	6M
	algorithm.			1
	UNIT-II	COO	T 2	407.5
3	The remainder 2 when divided by 5, 4 divided by 6, 5 divided by 11, 6	CO2	L3	12M
2 , 2	divided by 16. Write equations and solve it. OR		- a - 3	
4	a Solve the congruence $6x \equiv 3 \pmod{9}$.	CO2	L3	6M
	b Define congruence. Find all solutions of $9x \equiv 12 \pmod{15}$.	CO2	L3	6M
	UNIT-III		A z	
5	The mean of a random sample is an unbiased estimate of the man of	CO3	L3	12M
0	population 3, 6, 9, 15, 27. (a) List of all possible samples of size 3 that			
8	can be taken without replacement from the finite population?			8
, , ,	(b) Calculate the mean of each of the sample listed in (a) and assigning each sample a probability of 1/10. Verify that the mean of these X is		*	
	equal to 12, which is the mean of the population parameter θ . Prove that		55	19.00
	\overline{x} is an unbiased estimate of θ			
2 1	OR	GOA	* * *	<i>(</i>) <i>(</i>
, 6	a Define the tolerance interval and explain exact tolerant interval and exact nonparametric tolerance interval.	CO3	L1	6M
8	b Drying times for paint 3.4, 2.5, 4.8, 2.9, 3.6, 2.8, 3.3, 5.6, 3.7, 2.8, 4.4,	CO3	L3	6M
	4.0, 5.2, 3.0, 4.8. Find a 95% prediction interval for drying of the next		1.8	ile a
2	trail of paint.		2 + 1	
5 0	UNIT-IV	004	5-4	(3.5
7	a Three boys A, B, C are throwing a ball to each other. A always through the ball to B and B always throws to C but C is just as likely to throw the	CO4	L4	6M
	ball to B as to A. show that the process is Markovian. Find the transition			
	matrix and classify the states.	2	32.3	e = 10 ^A

- **b** Find the nature of the states of the Markov chain with the transition probability matrix
 - $P = \begin{bmatrix} 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \end{bmatrix}$

OR

There are two boxes, box I contains 2 white balls and box II contains 3 red balls. A each step of the process, a ball is selected from each box and the 2 balls are Interchanged. Thus box 1 always contains 2 balls and box II always contains 3 balls. The states of the system represent the number of red balls in box I after the interchange. Find (i) the transition matrix of the system (ii) the probability that there are 2 red balls in the box I after 3 steps and (iii) the probability that, in the long run there are 2 red balls in box I.

UNIT-V

A one person barber shop has six chairs to accommodate people waiting for haircut. Assume that customers who arrive when all the six chairs are full leave without entering the shop. Customers arrive at the average of 3 per hr and spend an average of 15minutes for service. Find (a) The probability that a customer can get directly into the barber chair upon arrival. (b) Expected number of customers waiting for a haircut. (c) Effective arrival rate. (d) The time a customer can expect to spend in the barber shop.

OR

A car servicing station has two bays where service can be offered CO5 L3 simultaneously. Due to space limitation only four cars are accepted for servicing. The arrival pattern is Poisson with 12 cars per day. The service time in both the bays is exponentially distributed with μ =8 cars per day per bay. Find the average number of cars in the service station the average number of cars waiting to be serviced and the average time spends in the system.

*** END ***

L3

L3

12M

12M